
Version 1.0 – Jul2019

Principles and Guidelines

CodeFreeze is a living-breathing design system. It’s
purpose is to be the smallest set of options that allow
us to design and build everything we need.

Principles and Guidelines

The principles, design language, and best practices in this document will
allow developers to focus on logic, while allowing UX to focus on
improving the user experience, interactions and workflows.

We strive to keep these guidelines top of mind as we make decisions.
These principles are prioritized by importance.

Antoine de Saint-Exupery

!
Perfection is achieved not when there is
nothing more to add, but when there is nothing
left to take away.

Role Based
Support users’ needs by only
presenting data associated
with their role and goal.

"
Consistent & Predictive
Create familiar experiences
by strengthening intuition
and applying the same
solution to the same problem.#

Timely

$
Support current needs for
the users by displaying only
relevant data as they need it.

Clean & Clear

%
Build lovable experiences by
providing actionable results
that create value for the
users.

The parts and the whole

CodeFreeze is based on Atomic Design methodology. This modularity allows greater flexibility and consistency, while reducing
costs and time to market.

Theme

The theme is the basic styling of the
application. It includes the colors, fonts,
icons, and grid structure. Theming allows
external purchasers to skin the application.

Components

Component are the building blocks of
the application. Our design system
utilizes Material Design’s components.
https://material.io/guidelines/

Patterns

A pattern is a simple, reusable
combination of multiple components
that function together as a single unit.

http://bradfrost.com/blog/post/atomic-web-design/

Theme

Theme / Color Palette

System

Neutrals

UI Light Theme

UI Dark Theme

0171B7
(1, 113, 183, 1)

.primary

000000
(0, 0, 0, 1)

.black

EFEFEF
(239, 239, 239, 1)

.stage

171621
(23, 22, 33, 1)

.stage

002F63
(0, 47, 99, 1)

.secondary

4D5059
(77, 80, 89, 1)

.mako

F6F6F6
(246, 246, 246, 1)

.board

1C1C28
(28, 28, 40, 1)

.board

1B8900
(27, 137, 0, 1)

.success

AAAAAA
(170, 170, 170, 1)

.silver

FFFFFF
(255, 255, 255, 1)

.card

232231
(35, 34, 49, 1)

.card

DA3D00
(218, 61, 0, 1)

.alt

E0E0E0
(244, 244, 244, 1)

.alto

BC0606
(188, 6, 6, 1)

.danger

FAFAFA
(250, 250, 250, 1)

.alabaster

!
Do not add custom colors without
consulting the UX team.

Theme / Typography

Roboto

Text is the primary way our users digest data. Help users complete their tasks by creating a clear visual hierarchy of the data.

The Web Content Accessibility Guidelines (WCAG) recommends a threshold ratio of 4.5:1. Background colors used are the two stage colors (light and dark theme).

https://fonts.google.com/specimen/Roboto

https://material.io/design/typography/the-type-system.html#

http://webaim.org/resources/contrastchecker/

Font and Font Weights

Color Contrast

Typeface styles

Aa AaAa Aa
Light (300) Medium (500)Regular (400) Bold (700)

H1 / Roboto Light
H2 / Roboto Light
H3 / Roboto Regular
H4 / Roboto Regular
H5 / Roboto Regular

H6 / Roboto Medium

Subtitle 1

Subtitle 2

Body 1

Body 2

BUTTON

Caption

O V E R L I N E

Aa AaAa Aa

! !" "

Aa Aa

! "

Aa Aa

! "
Primary Mako Silver Alto

Theme / Iconography

!
Material icons are less cartoonish… for this
reason, Material is preferred over Font Awesome.

!
Font Awesome icons should be used if a suitable
Material icon isn’t available.

!
Label are placed to the right, or under the icon.

"
Icons often cause usability problems when they are used without
consideration… use a text label and don’t rely on a hover for clarification.

#
Very few icons are universally recognizable by users. See the UX Team if
you need help selecting an icon, or need one custom designed.

https://material.io/icons/

http://fontawesome.io/icons/

http://uxmyths.com/post/715009009/myth-icons-enhance-usability

Material

Font Awesome

Label Placement

#

!

$

"

"

#

%

$

&

%

'

&

' (Delete
Settings

Theme / 8-Point Grid

!
Use these classes to properly size and position the
components and patterns.

"
Do not hard-code margin/padding on components.
Do not use numbers that break the 8-point grid.

https://spec.fm/specifics/8-pt-grid8-Point Grid (Margin and Padding)
Use multiples of 8 to define dimensions, padding, and margin of both block and inline elements. When all of your measurements follow the same rules, you automatically get
a more consistent UI. By removing 7 of every 8 spacing options, it allows the developer to eyeball an 8pt increment instead of having to measure each time.

Element

Padding

Border

Margin The Box Model

Naming

The Box Model is a way to describe an object’s dimensions and spacing. It consists of 4 components:
border, margin, padding, and the dimensions of the element itself.

Border: the thickness of the stroke around the edges of an element.

Padding: the space between the bounds of an element and its child elements

Margin: the space between the bounds of an element and neighboring objects

Class

.none

.xs

.sm

.med

.lg

.xl

.xxl

px

0

8

16

24

32

40

48

rem

0

.5

1

1.5

2

2.5

3

Theme / Elevation and Shadows

!
Elevation should be used to create visual hierarchy. Objects with higher
elevations are more prominent and should hold the most important information.

https://material.io/guidelines/material-design/elevation-shadows.html# https://material-components-web.appspot.com/elevation.htmlElevation and Shadows
Elevation provides important visual cues to users, helping them understand what actions are available. The higher an object’s elevation, the softer and larger its’ shadow
becomes.

00dp

08dp

01dp

09dp

02dp

12dp

03dp

16dp

04dp 06dp

24dp

Components

Components / Badges

!
Don’t send multiple notifications for the same thing.
Badges are designed to be passive, and should not be
used for critical information. Badge ≠ Count.

"
Badges must be red and can only contain an integer. Badges
are used when new/unread information is available for the
user (comments, notes, etc). Update the integer as soon as
the important content is viewed.

A badge passively indicates unread/unseen content.

Badges

#
5 5555

Components / Buttons

Raised Buttons

Basic Buttons

Floating Action Buttons (FAB)

Extended FAB

Buttons communicate what actions are available to the user.

Buttons

PRIMARY
U

DANGER

!
The text and color of the button should reinforce the
action being taken, so don’t rely on color and/or icon alone.

!
Never use more than two secondary buttons. If three or
more secondary actions are available, consult the UX Team.

!
Don’t use icons that make the user interact with it to figure
out what it does. No screen is permitted multiple FABs.

!
Avoid wrapping text… keep labels short.

"
This button is used to add dimension and
emphasize important functions. Raised button
representing the primary actions, and should be
placed on the right of any secondary buttons.

"
This button is used for general functions and
reduce the amount of layering on the screen,
making it more readable.

"
Very few screens warrant a floating action button. FABs are
only allowed to be placed in the bottom-right corner of the
stage, and represent the primary application-wide action.

"
The text label of an extended FAB should describe its action.

SUCCESS SECONDARY

PRIMARY DANGER SUCCESS WHITE

$%

https://material.io/guidelines/components/selection-controls.html#

https://material.io/design/components/buttons-floating-action-button.html#

https://material.io/design/components/buttons-floating-action-button.html#extended-fab

MENU

MENU

Components / Chips

Deleteable Chips

 A chip is a small block of supporting data such as a avatar, text or a status. Chips are placed to the right of the data it supports.

Chips https://material.io/guidelines/components/chips.html

!
If the data isn’t supporting the data directly to its left, a
different component is needed. Avoid long, run-on text. Inactive
Chips can only be used if the supporting data is inactive.

!
Never allow users to remove an element from the
UI without a way to add it back or undo the action.

"
Chips should only represent one chunk of data, but can be used
in groups. Color can be used to help convey the data (ie. green
for a good status, red for bad) but should be used sparingly.

"
Deleteable Chips should only be used when the user
added the Chip to the interface.

Primary Success Alt Danger DisabledDefault

I can delete this!

Components / Form Field

Form Fields allow users to input text and usually appear in forms. Users may enter text, numbers, or mixed-format types of input.

Clear Input

Range Input

Search Input

Form Field https://material.io/design/components/text-fields.html

!
Avoid really long or wrapping labels. Don’t
repeat section headers with the same label.

!
Only use on fields where it makes sense for the user to empty the input field.

!
Don’t use for large, app-wide searches… it lacks the affordance of a large-scale search.

"
Label must be descriptive and short. Use good
defaults, and autocomplete when at all possible.

"
Displays only after characters have been entered.

"
The minimum is on the left, maximum on right.

"
Only use when searching on a specific field.

Label

!Value

Label

Minimum

Search

Input Text

Label

Input Text

Label

Input Text

Label

!Value

Label

Maximum

Error Message

Input Text

Label

to

Components / Select Fields

A dropdown menu is a compact way of displaying multiple choices. It appears upon interaction with an element.

!– Select –

Label

!Option 2

Label

!Option 2, Option 5

Label

Multi-select

"Option 2

Label

"Option 2, Option 5

Label

Select Fields https://material.io/design/components/menus.html#dropdown-menu

#
Don’t allow the window to overflow the
stage… the entire window should be visible.

$
Follow the guidelines set forth in the Text Field section.

Option 3

Option 2

Option 1

Option 10

Option 9

Option 8

Option 7

Option 6

Option 5

Option 4

Option 3

Option 2

Option 1

Components / Date Picker

A control used for selecting a single date.

Date Picker https://material.io/design/components/pickers.html

!
Don’t include the word “Date” in the label.
The calendar icon and date (when filled in)
are adequate affordance.

"
Default picker is Inline Container with AutoOK.

#dd-mmm-yyyy

Date

#18-Sep-2019

Date

OKCANCEL

30292827262524

23222120191817

16151413121110

9876543

21

SFTWTMS

18

September 2019

$

%

Mon, Sep 18
S E L E C T D A T E

Components / Selection Controls

Checkbox

Radio Button

Switches

Selection controls allow the user to select options.

Toggle buttons can be used to group related options. To emphasize groups of related toggle buttons, a group should share a common container.

Selection Controls https://material.io/guidelines/components/selection-controls.html#

!
Not to be used as a single on/off switch. Use a toggle in such cases.

!
Avoid long lists of options. After five options, consider a dropdown.

"
For selecting multiple options from one set.

"
For selecting a single option from a set. Default
to the most likely selection (when possible).

"
Use when a single settings is either True/False.

Toggle Button

!
Don't rely on icons alone… this example is strictly for demo purposes.

"
Toggle buttons behave as radio buttons by default.

https://material.io/design/components/buttons.html#toggle-button

On

On

On

Off

Off

Off

Disabled On

Disabled On

Disabled On

Disabled Off

Disabled Off

Disabled Off

Components / Dialogs

Dialogs inform users about a task and can contain critical information, require decisions, or involve multiple tasks. Dialog Buttons should help users make those decisions.

Dialog

!
Don’t open a dialog from within a dialog. Avoid scrolling in dialogs.

"
Use dialogs sparingly because they are interruptive. Not
every choice, setting, or detail warrants interruption.

Alert dialog prompt

BUTTONBUTTON

BUTTONBUTTON

Apparently we had reached a
great height in the atmosphere,
for the...

Headline 6

BUTTON

BUTTON

https://material.io/design/components/dialogs.html

Components / Snackbar

Default

Color and Action

Multi-line and Long Text Button Example

Snackbars provide brief messages about app processes at the bottom of the screen. Snackbars can contain a single action.

UNDOYour template was published.

Snackbar https://material.io/design/components/snackbars.html

!
Don’t stack snackbars… only one can be open at a time.

"
The default should contain a single line of text
directly related to the operation performed.

"
The snackbar can have a background color of Success or Danger to
convey the result of an operation (example: “Save Successful”). A single
action button can be included (if needed to complete the operation).

!
Snackbars don’t require user input to disappear…
don't use the button to make users close a snackbar.

Your template was published.

LONG TEXT BUTTON

Greyhound divisively hello coldly wonderfully
marginally far upon excluding.

Components / Sheets

A sheet are essentially an empty card used to group data into logical chunks and to create visual hierarchy on the work area.

Sheets https://material.io/guidelines/components/cards.html#

!
Sheets can not overlap because they are on the same elevation.

"
Sheets are always the same color and elevation (2dp). Sheets can be
tabbed when the data and/or workflow necessitate it. Layouts are created
using Flexbox and should never overflow-x (causing horizontal scrolling).

Components / Cards

Cards contain content and actions about a single subject. Cards allow for another level of grouping data into chunks.

Cards

!
Cards are not to be used as a design element…
they are only used to group data within a board.

"
Cards are always the same color and elevation (4dp). Cards are
never tabbed. Card layouts are created using Flexbox and should
never overflow-x (causing horizontal scrolling) the sheet containing
it.

https://material.io/guidelines/components/cards.html#

Components / Side Sheets

Side sheets are surfaces containing supplementary content that are anchored to the left or right edge of the screen.

Side Sheets

!
Don't ask users to open additional elements to
find the data they need to complete their task.

"
The primary usage will be to display supporting information or
metadata. Details that can help users complete their task without
navigating away for additional information.

https://material.io/design/components/sheets-side.html#

Components / Tables

Data tables display information in a way that’s easy to scan, so that users can look for patterns and insights.

Tables

!
Don’t create custom sorts or filters for tables…
use the Material defaults when needed.

"
For tabular data only. Use the default
Material table but add zebra stripping

https://material.io/design/components/data-tables.html

Flex columns to data sizeRight align numbersLeft align textHeader Sorted Header#

Lorem ipsum dolor sit amet, consectetur adipiscing elit.5.00ValueValueValue

How to truncate if necessary. Lorem ipsum consectetu…55.00ValueValueValue

Lorem ipsum dolor sit amet, consectetur.555.00ValueValueValue

Components / Lists

Lists are container components that wrap and format a series of line items. As the base list component, it provides Material Design styling, but no behavior of its own.

Lists

!
Lists should direct users to an action… or more
information… don't overload a list item with data.

"
Lists present content in a way that makes it easy to
identify a specific item in a collection and act on it.

https://material.io/design/components/lists.html#

Expandable Lists

Expandable Lists

Selectable Lists

Selectable Lists

Avatar List with Menu

Avatar List with Menu

Meta Data

Short description / text
List Item Name

Meta Data

Short description / text
List Item Name

Components / Stepper

The stepper provides a wizard-like workflow by dividing content into logical steps.

Stepper

!
Don't use as the only way to navigate through the steps…
provide some sort of Next/Back options. Wizards should
be reserved for workflows that are not performed regularly.

"
Steps should be clear… show as much detail as
possible… and allow users to see how much work remains.

https://material.angular.io/components/stepper/overview

2 3

First Step Second Step Third Step

"

Components / Tabs

Tabs organize content across different screens, data sets, and other interactions.

Tabs

!
Cards and Sheets can be tabbed… use the background color of
the component it sits on. Don't make tabs colorful to stand out.

"
Tabs organize content into categories to help
users easily find different types of information.

https://material.io/design/components/tabs.html

TABTABTAB

BUTTONBUTTONBUTTON

Components / Expansion Panels

Expansion Panels allow content to be placed within expandable sections.

Expansion Panels

!
Never hide pertinent information. Give the user what
they need and allow them to get more (if requested).

"
A collapsed panel displays summary information of
the data it contains. Expanded panels, like cards, are
a blank canvas. They can contain a variety of data.

https://material.angular.io/components/expansion/overview

One

One
Two

Two
Three

ThreeFour

Four

Five

Five

Patterns

Patterns / Uploads

This pattern allows users to upload information into the system.

Uploads

Inline / Form

!
Don't stack this pattern to allow multiple files. If
users can upload multipe files use the drop zone.

"
This large drop zone with browse feature is the
preferred option (when viable).

"
Use this pattern when users are restricted to a single file.

Files must be .xlsx and less than 2mb.

BROWSE TO FILE

Drop file here or

File must be xlsx and less than 2mb

Select a File

Upload

BROWSE

Patterns / Empty State

An empty state, or zero-data state, notifies users when an item’s content can’t be shown.

Empty State

!
Empty states are not to be used for system errors.

"
Think of this empty state as a mini landing page. While
minimal in design, a successful empty state will explain a
specific feature and then compel the user to take the next step.

Your queue is empty. Look
busy as I find you work.

Great job!
#

Patterns / Progress and Loading

Progress and activity indicators are visual indications of an app loading content.

Progress and Loading

Spinner

Bar

https://material.angular.io/components/progress-spinner/overview

https://material.angular.io/components/progress-bar/overview

!
Avoid for long processes where the bar appears to stop.
Use the spinner so users see they system isn't frozen.

"
When progress can be accurately calculated, use a progress
bar and include the progress in the label.

"
Use the spinner (indeterminate) as the default progress indicator.

Saving

Importing (58%)

Patterns / Displaying Data

How data is displayed greatly impacts the users ability to accomplish their task. Be mindful of what task the user is trying to accomplish when displaying data.

Displaying Data

Vertical

Horizontal

!
Don’t mix displays and text fields because of their
similar styling. Avoid clustering too many displays.

"
A zebra-striped display can be used if
the data is easier to digest/compare.
Inline edits are displayed as links.

"
The default display of data pairs is
vertically. Use short, descriptive labels.

Study

T400-T19

MT400-T19Study

FSex

Vehicle ControlGroup

DAY 90Time

Something missing?
If your story or feature cannot be solved with existing components or pattern, consult the UX Team.

